
Hiding gravitationally 
oupled s
alars through lo
al symmetry restoration (afterarxiv:1001.4525)Andrei VlasovMar
h 9, 2010In the work is 
onsidered the s
alar �eld, whi
h is 
oupled with gravitation and the matter. The 
oupling is su
hthat the �eld evolves in e�e
tive potential
Veff (φ) = −µ2φ2 + λφ4 +

ρφ2
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(1)where ρ is the density of matter and µ, λ,M are the parameters of the theory. When ρ ≤ µ2M2, the symmetry isbroken, but in dense environments, ρ > µ2M2, the symmetry is restored. The intera
tion between matter and the �eldis proportional to the lo
al average value of the �eld, and then in dense environments there is no intera
tion betweenmatter and the �eld.The a
tion of the theory states:
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(8)Stati
 equation on the �eld φ:

φ′′ +
2

r
φ′ = V,φ + A,φρ (9)The prime denotes the derivative wrt r. we 
onsider the 
ase of homogeneous obje
t of radius R and density ρ.Approximate solution 
an be obtained by linearising the potential around the 
orresponding minima. The solution:
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2µr + φ0 (11)There are three dimensionless parameters in this solutions: µR, ρ
µ2M2 , ρR2/M2. In the situation under 
onsideration

µR ≪ 1, ρ
µ2M2 ≫ 1. The third parameter, α 
an be either great or small.The equations of gravitational �eld in the 
ases:
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where T
(φ)
µν is stress-energy tensor of the �eld φ, and Tµν is stress-energy tensor of the rest matter. The linearised Einsteinequations state in this 
ase:
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(T00 + 3T11) (15)We assumed, that h11 = h22 = h33, h0i = 0, hij = 0 if i 6= j - this is indeed the 
ase in Cartesian 
oordinates. Gauge-�xing 
ondition for this 
ase states: ∂µ(hµν − 1

2hgµν) For light de�e
tion and time delay experiments matters only onePPN parameter,
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