

Constraining a pure r-process Ba/Eu ratio from observations of halo stars

Lyudmila Mashonkina Institute of Astronomy, RAS, Russia

SCOPES 2009-2013 programme

September 9-10, 2013, Moscow, Russia

Outline of this talk

- * Introduction: why Ba/Eu is important?
- HFS effects on derived Ba abundances.
- Non-LTE modelling for Ba II and Eu II.
- ★ Ba/Eu of r-II stars.

Introduction: why Ba/Eu is important?

Origin of heavy elements (Z > 30)

- $\checkmark \quad \text{Slow} (s-) \text{ process:}$
- main component (A=90-208), AGB stars of 2-4 M_{sun},
 calculations: *Arlandini et al.* (1999, A99), updated by *Bisterzo et al.* (2011, B11).
- weak component (A < 90), He burning core of $M > 10 M_{sun}$.
- $\checkmark \quad \text{Rapid} (r-) \text{ process: SNeII, neutron star mergers }?$

Solar System matter, Ba and Eu isotopes

Lodders2009		s-process (%)		Lodders2009		s-process	
	(%)	A99	B 11		(%)	A99	B 11
^{134}Ba	2.4	100	100	¹⁵¹ Eu	47.8	6	6
¹³⁵ Ba	6.6	26	30	¹⁵³ Eu	52.2	5	6
¹³⁶ Ba	7.9	100	100				
¹³⁷ Ba	11.2	66	67				
^{138}Ba	71.7	86	94				
Total Ba:		81	88.7	Total Eu		6	6
Significant discrepancy!							

Introduction: why Ba/Eu is important?

- Solar system matter: log Ba/Eu = 1.66
- *r*-residuals = SS abundance *s*-contribution

 $log (Ba/Eu)_r = 0.96, [Ba/Eu]_r = -0.70$ (A99), Due to different 0.74 -0.92 (B11). Due to different predictions for Ba!

r-process models

log (Ba/Eu)_r \approx 1, WP approximation (*Kratz et al.* 2007),

0.8, HEW (Farouqi et al. 2010)

Ba/Eu is sensitive to whether s- or r-process dominated heavy element production

 Most MP stars are enriched in *r*-process elements *Spite & Spite* (1978), *McWilliam* (1998), *Mashonkina&Gehren* (2000), *Barklem et al.* (2005), *Francois et al.* (2007).
 s-process contributes to Ba at [Fe/H] > -1. Introduction: why Ba/Eu is important?

Ba/Eu in [Fe/H] < -1.5 stars with [Ba/Eu] < -0.4

(based on literature data, in total, 14 sources)

Why do *Arlandini*1999's and WP models reproduce observations better than those of *Bisterzo*2011 and HEW?

r-II stars are best candidates for learning r-process

✓ First discovery: CS 22892-052
 [Fe/H] = -3.1, [Eu/Fe] = 1.63.

✓ r-II: ~ 5 % of stars at [Fe/H] < -2.5.
12 stars are known:

 $-3.4 \le [Fe/H] \le -2.8$, [Eu/Fe] = 1.0 - 1.9.

In total, 30 elements from Sr to Th were measured.

(Sneden et al. 1994, 1996, 2003)

This study aims to improve observational data on Ba and Eu abundances of the r-II stars

 \checkmark by using an appropriate Ba isotope mixture,

✓ taking the departures from LTE for Ba II and Eu II into account.

- In odd-atomic mass isotopes, nucleon-electron spin interactions lead to hyper-fine splitting (HFS) of the energy levels.
- Each line of Ba II and Eu II consists of isotopic and HFS components. They make the line broader resulting in larger absorbed energy.
- HFS effects depend on isotope mixture.
- Eu: two odd-A isotopes, strong HFS effects. SS: ¹⁵¹Eu:¹⁵³Eu = 48:52, r-process: 39:61.
 Minor change in derived abundances between using two isotope mixtures.
- Ba: isotope mixture is different for SS matter and r-process.

Eu II 4129: isotopic and HFS components. Relative intensities correspond to ${}^{151}\text{Eu}:{}^{153}\text{Eu} = 48:52$

Ba II 4554, 4934 Å are strongly affected by HFS

- ✓ The greater f_{odd} , the stronger Ba II 4554 is. Ba abundances derived from resonance lines depend on adopted f_{odd}
- ✓ HFS is negligible for subordinate lines of Ba II.

Ba II 4554, 4934 Å are strongly affected by HFS

Effect of different Ba isotope mixtures for Sneden"s star CS 22892-052, 4800/1.5/-3.1

Mean non-LTE abundance	f_{odd}					
(Ba II 4554, 4934 Å)						
0.03	0.18	(Solar System)				
$\textbf{-0.18} \pm 0.01$	0.46	(A99)				
$\textbf{-0.28} \pm 0.03$	0.66	(B11)				
-0.30	0.72	(McWilliam, 1998)				
-0.20	0.52	(Sneden et al. 1996)				
(Ba II subordinate lines)						
-0.15 ± 0.02	-0.15 ± 0.02 f_{odd} : Arlandini1999 or Bisterzo2011 ? Caution against firm conclusion, when the resonance lines are strong. $\Delta \xi_t = -0.2 \text{ km/s} \rightarrow \Delta \log \epsilon = +0.15 \text{ dex}$					

Non-LTE modelling for Ba II and Eu II

What is meant by *non-local thermodynamic equilibrium* (non-LTE)?

- Atomic level number densities *n_i* from balance between various population and de-population processes, i.e., statistical equilibrium (SE) equations.
- Maxwellian velocity distribution, $T_e = T_A = T_i$
- Model atom represents real atomic term structure.
- Solution of combined SE and radiation transfer equations:

$$\begin{split} n_i \sum_{j \neq i} (R_{ij} + C_{ij}) &= \sum_{j \neq i} n_j (R_{ji} + C_{ji}) \\ \mu \frac{dI_\nu(z,\mu)}{dz} &= -\chi_\nu(z) I_\nu(z,\mu) + \eta_\nu(z) \end{split}$$

Excitation and ionization state of the matter at any depth point depends on physical conditions throughout the atmosphere.

Atomic term structure for Ba II

Method of calculations

- Non-LTE populations for Ba II and Eu II:

 model atoms and atomic data from *Mashonkina et al.* (1999), *Mashonkina* (2000, updated)
 code DETAIL by *Butler & Giddings* (1985) with updated opacity package.
- Spectral line synthesis: code SIU by *Reetz* (1991).
- Model atmospheres: MARCS (Gustafsson et al. 2008)

Departure coefficients $b = n_{NLTE}/n_{LTE}$ for Ba II and Eu II in 4800/1.5/-3 model

Ba II 4554: b(6s) ≈ 1, b(6p) < 1, line is strengthened, with non-LTE abundance correction Δ_{NLTE} = -0.14 dex.
Ba II 5853: b(5d) ≈ 1, b(6p) ≈ 1,

• Eu II 4129: $b_{low} \approx 1$, $b_{up} > 1$ line is weakened, $\Delta_{NLTE} = +0.10$ dex.

Mashonkina et al. (2013, in prep)

Non-LTE effects depend on stellar parameters and the line.

$\Delta_{\rm NLTE} = \log \epsilon_{\rm NLTE} - \log \epsilon_{\rm LTE}$						
$T_{\rm eff}/\log g/[Fe$	e/H]/[Ba/	'Fe] Ba II 4554	4 5853	6497	[Eu/Fe]	Eu II 4129
4800/1.5/-	3/ 1.1	-0.13	3 -0.14	4 -0.35	1.8	0.06
4800/1.5/-	3/ 0.7	-0.14	4 -0.02	2 -0.22	1.6	0.08
5050/2.3/-	3/ 0.7	-0.15	5 0.02	2 -0.11	1.5	0.10
5010/4.8/-	3/ 0.7	-0.02	0.01	0.01	1.5	0.03

r-II stars are mostly VMP cool giants.
 Non-LTE leads to *lower* Ba, but *higher* Eu abundances.

Exception is VMP dwarf with [Eu/Fe] = 1.9 (*Aoki et al.* 2010).
 Non-LTE effects are minor.

Sources of observational data (spectra, EWs, LTE abundances):

Sneden et al. (1996); Christlieb et al. (2004); Honda et al. (2004); Andrievsky et al. (2009); Aoki et al. (2010); Mashonkina et al. (2010).

Ba non-LTE abundances:

- from subordinate lines of Ba II (CS 22892-052, HE 1219-0312, HE 2327-5642, SDSS J2357),
- from two resonance lines available, with $f_{odd} = 0.46$ and 0.66 (CS 22183-031, CS 29497-004),
- taken from *Andrievsky et al.* (2009) (CS 31082-001, CS 22953-003, subordinate and resonance lines, $f_{odd} = 0.5$).

Eu non-LTE abundances: 8 stars, in total.

Non-LTE effects on Ba abundances of Sneden"s star CS 22892-052, 4800/1.5/-3.1

Mean abundance	LTE	non-LTE
Ba II 4554, 4934 ($f_{odd} = 0.46$, A99)	$0.02{\pm}0.07$	-0.18 ± 0.01
$(f_{odd} = 0.66, B11)$	-0.05 ± 0.08	-0.28 ± 0.03
Ba II subordinate lines	0.02 ± 0.11	-0.15 ± 0.02

Note dramatic reduction of statistical error when moving from LTE to non-LTE. This favours non-LTE line formation for Ba II.

Ba/Eu of r-II stars

Non-LTE Ba/Eu ratios of the r-II stars support

- ✓ updated solar r-process log $(Ba/Eu)_r = 0.74$ (*Bisterzo et al.* 2011)
- ✓ HEW r-process model log $(Ba/Eu)_r = 0.8$ (*Farouqi et al.* 2010)

Concluding remarks

 Adequate line-formation modelling is important for accurate determination of heavy element abundances of VMP stars, in particular, giants.
 Δ_{NLTE} can be of different sign for (Sr,Ba) and (Eu,Nd,Pr,...).

- Revised Ba/Eu abundance ratios of the r-II stars support chemical evolution calculations of *Bisterzo et al.* (2011) and HEW r-process model by *Farouqi et al.* (2010).
- For constraining r-process models, it would be important to determine fraction of the odd isotopes of Ba in the r-II stars.

(See tomorrow talk on proposed project).

Abundance difference between "moderate" and "extreme" r-II stars

r-II stars:

- ☺ similar abundance pattern in the Sr-Ir range.
- ☺ Ba-Hf match the Solar r-process pattern very well.
- ⊗ Sr-Ag: no conclusion due to uncertainty in the Solar r-process abundances.

Stellar abundances: Mashonkina 2010; Francois 2007; Lai 2008.

Abundance difference between r-I and "extreme" r-II stars

Four r-I stars: [Fe/H] = -1.55 to -2.99, [r/Fe] = 0.63 to 0.86.

- ☺ Ba-Ir: abundance pattern is similar to that of r-II stars, pure r-process synthesis up to [Fe/H] = -1.55.
- ? Sr-Ag: extra-production, how, where ?

Stellar abundances: Ivans 2006; Cowan 2002; Westin 2000; Sitnova & Mashonkina 2011.