The r- and s- process contributions to heavy-element abundances in halo star HD 29907.

Sitnova T¹, Mashonkina L.I²

¹Moscow State University, Universitetsky pr. 13, 119992, Moscow, Russia, e-mail: sitamih@gmail.com
²Institute of astronomy, RAS, Pyatnitskaya st. 48, 119017, Moscow, Russia, , e-mail: lima@inasan.ru

2011

Neutron capture reactions

R-process								
44			Neut	tron Ca	pture			
Ru	45							
⁹² Ru	Rh	46	В	eta Dec	ay			
⁹³ Ru		Pd	47					
⁹⁴ Ru	⁹⁵ Rh		Ag	48				
⁹⁵ Ru	⁹⁶ Rh	97Pd		Cd				
96 Ru	⁹⁷ Rh	98Pd	99Ag	¹⁰⁰ Cd	49			
97 F u	⁹⁸ Rh	99Pd	¹⁰⁰ Ag	¹⁰¹ Cd	In			
98F u	99Eh	¹⁰⁰ Pd	¹⁰¹ Ag	¹⁰² Cd				
99 <mark>6 u</mark>	100 Rh	¹⁰¹ Pd	¹⁰² Ag	¹⁰³ Cd	¹⁰⁴ ln			
100 Ru	¹⁰¹ Rh	102 Pd	¹⁰³ Ag	¹⁰⁴ Cd	¹⁰⁵ ln			
101 Ru	102 Rh	103 Pd	104Ag	¹⁰⁵ Cd	¹⁰⁶ ln			
102 Ru	103 Rh	10- ⊃d	105 Ag	¹⁰⁶ Cd	¹⁰⁷ In			
103 Ru	¹⁰⁴ Rh	10: ⊃d	106 Ag	¹⁰⁷ Cd	¹⁰⁸ In			
104 Ru	105 Rh	100 Pd	10 Ag	108 Cd	¹⁰⁹ ln			
105 Ru	106 Rh	10 Pd	10: Ag	¹⁰⁹ Cd	¹¹⁰ In			
106 Ru	107 Rh	105 Pd	10 Ag	110 Dd	¹¹¹ In			
107 KU	105 Rh	10 Pd	111 Ag	111 Dd	¹¹² In			
105 Ku	109 Rh	11 Pd	11 Ag	112 Dd	113m			
109 <mark>(</mark> U	11 Rh	11 Pd	11 - Sg	11 .d	114 n			
110 _{Ru}	111 _{Rh}	112 = d	11 - Sg	11 Jd	115 n			
67	112, sh	113 - 1	11 - Kg	115 Cd	116 n			
1	68	1 d	11 Ag	116 Dd	117 1			
*		69	111 Ag	117 . d	118 7			
		70	11 Ag	118 . d	119			

nracacc

N_n>10²² cm⁻³

SN II

r- process began earlier than the main s-process

Ag	48	Neutron Captur			
	Cd		-		
99Ag	¹⁰⁰ Cd	49	-	Beta De	ecay
¹⁰⁰ Ag	¹⁰¹ Cd	In	50		
¹⁰¹ Ag	¹⁰² Cd		Sn	51	
¹⁰² Ag	¹⁰³ Cd	¹⁰⁴ In		Sb	52
¹⁰³ Ag	¹⁰⁴ Cd	¹⁰⁵ ln			Те
¹⁰⁴ Ag	¹⁰⁵ Cd	¹⁰⁶ ln	¹⁰⁷ Sn		¹⁰⁹ Te
¹⁰⁵ Ag	¹⁰⁶ Cd	¹⁰⁷ ln	¹⁰⁸ Sn		
¹⁰⁶ Ag	¹⁰⁷ Cd	¹⁰⁸ ln	¹⁰⁹ Sn	¹¹⁰ Sb	111Te
¹⁰⁷ Ag	¹⁰⁸ Cd	¹⁰⁹ ln	¹¹⁰ Sn	¹¹¹ Sb	¹¹² Te
¹⁰⁸ Ag	¹⁰⁹ Cd	¹¹⁰ ln	¹¹¹ Sn	¹¹² Sb	¹¹³ Te
¹⁰⁹ Ag	110 Cd	¹¹¹ In	¹¹² Sn	¹¹³ Sb	¹¹⁴ Te
1 Ag	11 Dd	¹¹² In	¹¹³ Sn	¹¹⁴ Sb	¹¹⁵ Te
¹¹¹ Ag	112 Cd	¹¹³ ln	¹¹⁴ Sn	¹¹⁵ Sb	¹¹⁶ Te
¹¹² Ag	11 Cd	114ln	¹¹⁵ Sn	¹¹⁶ Sb	117Te
¹¹³ Ag	11 Cd.	115In	116 _{Sn}	¹¹⁷ Sb	¹¹⁸ Te
¹¹⁴ Ag	1 Cd	Min	11 Sn	¹¹⁸ Sb	¹¹⁹ Te
¹¹⁵ Ag	¹¹⁶ Cd	¹¹⁷ ln	11 Sn	¹¹⁹ Sb	120 Te
¹¹⁶ Ag	¹¹⁷ Cd	118In	11 Sn	¹²⁰ Sb	¹²¹ Te
117Ag	¹¹⁸ Cd	119In	12 Sn	¹²¹ Sb	122Te
¹¹⁸ Ag	¹¹⁹ Cd	¹²⁰ In	1 on		¹²³ Te
¹¹⁹ Ag	¹²⁰ Cd	¹²¹ In	¹²² Sn	¹²³ Sb	124Te
120 Ag	¹²¹ Cd	¹²² In	¹²³ Sn	¹²⁴ Sb	125Te
¹²¹ Ag	¹²² Cd	¹²³ In	¹²⁴ Sn	¹²⁵ Sb	126Te

N_n> 10⁸ cm⁻³

During hydrostatic He burning. Main component in AGB stars of 2-4 M_o

s-process contribution to solar abundance (Arlandini et al. 1999) Х Sr Y Zr Mo Ba La Ce Pr Nd Sm Eu Gd Dv Но Er Tm Yb S-, % 85 92 83 50 81 62 49 5.8 7.8 77 56 29 15 15 17 13 33 For example, Ba is called as s-process element, Eu is called as r-process element.

Beers and Chrislieb (2005): r-I stars, if 0.3 < [Eu/Fe]<1 and [Ba/Eu]<0, r-II stars, if [Eu/Fe] > 1 and [Ba/Eu] < 0 (12 stars are known, all have -3 <[Fe/H]< -2.5).

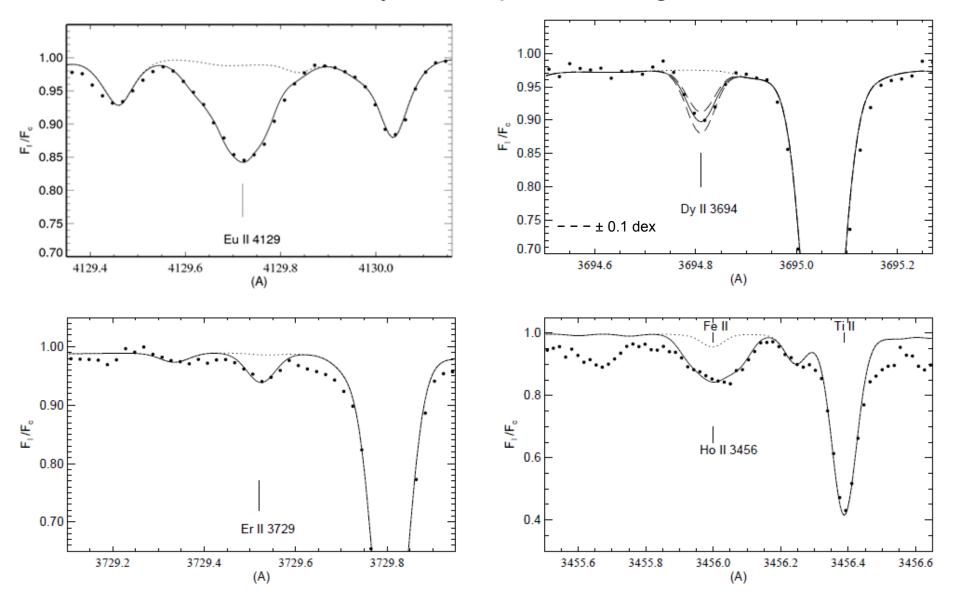
When the s-nuclei synthesis began in AGB stars? Theory (*Travaglio et al. 1999*): [Fe/H] ≈ -1.5 Observations (*Burris et al. 2000, Roederer et al. 2010*): [Fe/H] from -2.6 to -1.4.

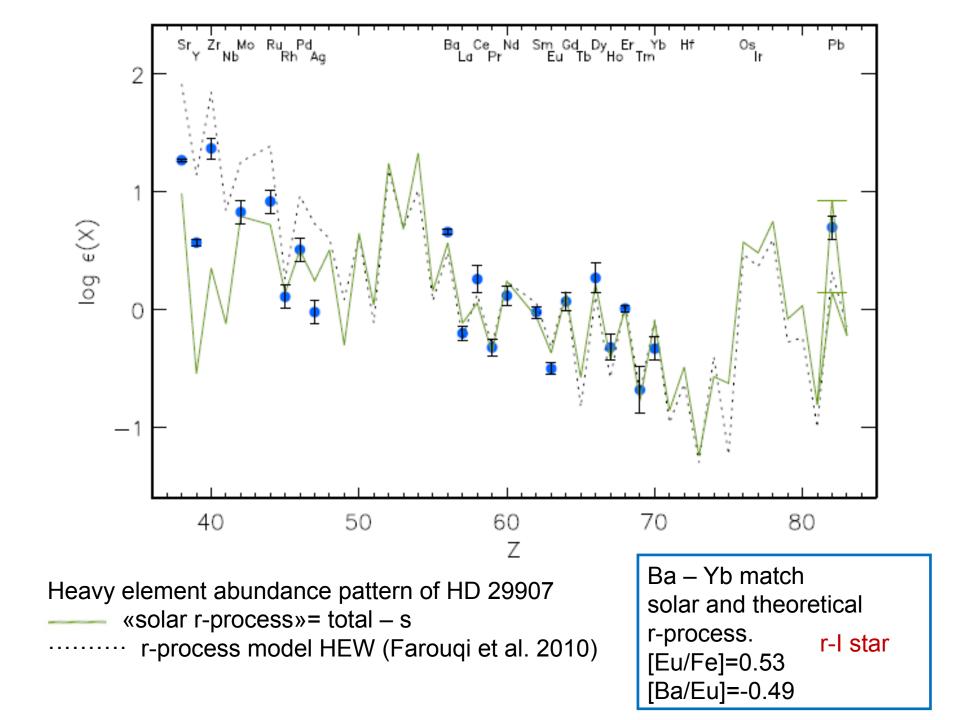
 $\begin{array}{l} [X/Fe] = [X/H] - [Fe/H] \\ [Fe/H] = \log(N_{Fe}/N_{H})_{*} - \log(N_{Fe}/N_{H})_{o} \end{array}$

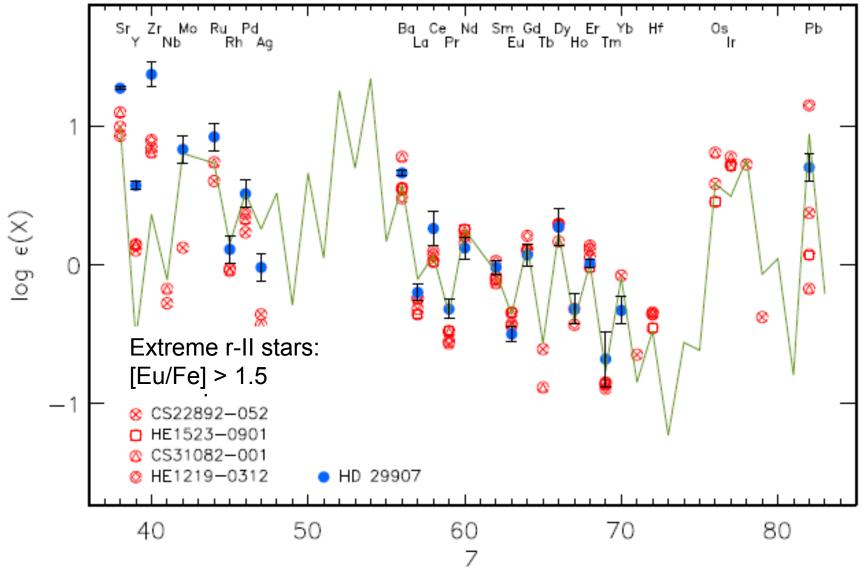
The purpose of this work is to find traces of the enrichment of Galactic matter with s-nuclei from precise analysis of chemical abundances of halo star with metallicity of -1.55

HD29907 – halo star

```
T_{eff}=5500 K, Log(g) = 4.64, [Fe/H]=-1.55, \xi= 0.6 km/c
```

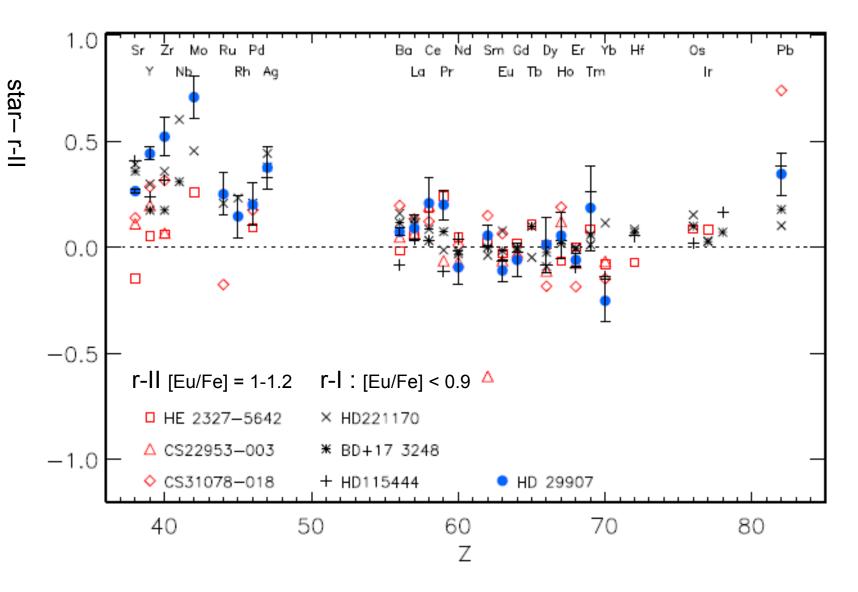

(Mashonkina et al. 2003)

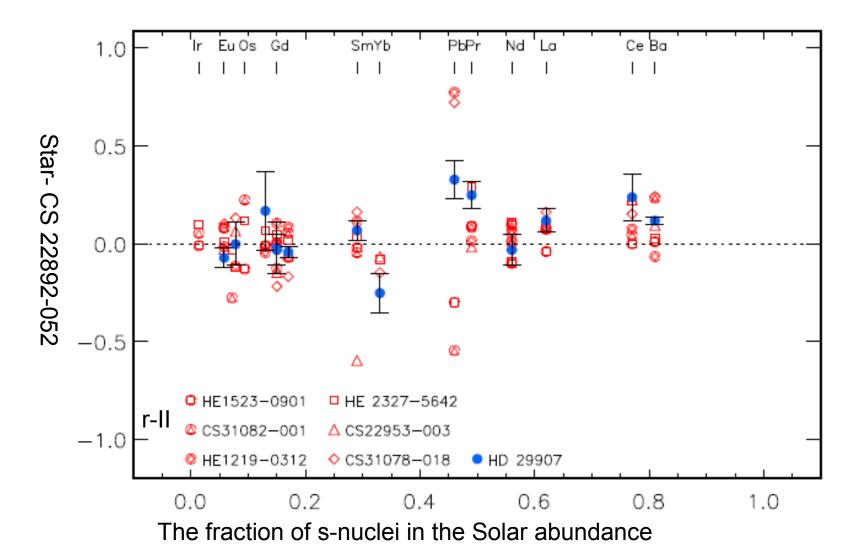

Observations (project no. 67.D-0086A, PI – T. Gehren): $\lambda/\Delta\lambda$ =60000 S/N>200 VLT2/UVES (Chile) λ = 3350-4450 A, 4600-5550 A,5650-6650 A


Method: line profile analysis (program SIU), model atmosphere (program MAFAGS)

Abundances of 22 elements were determined: Sr-Pb and C,N.

Quality of line profile fitting





Ba-Yb in HD 29907 match "empirical" r-process based on r-II stars.

Sr-Zr : higher abundances

r-I stars: Sr-Ag are higher than in r-II, but not due to s–process ! Additional source of their synthesis in early Galaxy was discussed (Truran et al. 2002,Travaglio et al. 2004)

Pr, La, Ce, Ba : the fraction of s-nuclei >49 % , (HD 29907 – CS 22892-052) > 0, but no trend in their behavior. We didn't found convincing evidence for s-nuclei presence in HD 29907.

Conclusions

- HD 29907 is a r-I star ([Fe/H] = -1.55 and [r / Fe] = 0.63).
- Ba to Yb in this star match the scaled Solar r-process and empirical r-process abundance pattern very well, their origin is connected with a pure r-process
- HD 29907 shows enhanced abundance of Sr to Zr supporting the idea of the existence of LEPP in the early Galaxy.
- Even if there was a contribution of AGB stars to Galactic heavy elements at the epoch [Fe/H] = -1.55, it was small, at the level of the abundance errors.