<u>New Supernova Scenarios for r-process Nucleosynthesis:</u> Heavy element Nucleosynthesis in a Supernova by Quark-Hadron Phase Transition

> Nobuya Nishimura (Universität Basel /GSI)

<u>Collaborators</u>

T. Fischer (GSI) F.-K. Thielemann (Basel) with Uni. Basel, GSI and Heidelberg Group

Introduction

- r-process and astronomical sites
- Supernova scenario
 by a quark-hadron phase transition

CC-SNe as the origin of r-process

Physical conditions for r-process

r-process Astronomical Sites

astronomical site	r-element mass (M₀)	event rate (1/year/galaxy)	type*
Neutrino Driven Wind $^{\alpha}$?10 ⁻⁵	10-2	high s
prompt-SN ^B	10-2	?10-5	low S
Neutron Star Merger $^{\gamma}$?10-2	?10 ⁻⁵	low S
Collapsar Model ^δ	10-2	?10-4,-5	high s/low s
Magneto-driven SN $^{\varepsilon}$	10-2	?10 ⁻⁵	low s
Acoustic Wave SN ζ	10-2	?10 ⁻⁵	high s

process*: Wanajo (2007)

"high s" process (high entropy and not low Y_e)

"low s" process (low entropy and low Y_e)

 α : Woosley et al. (1994), Otsuki et al.(2000) etc.

- β : Wanajo(1994), Sumiyoshi(2000) etc.
- γ : Freiburghaus et al. (1999), Wanajo et al. (2010) etc.
- δ : disk wind: McLaughlin and Surman etc.

MHD Jet: Fujimoto(2007) etc.

 ε : Nishimura et al. (2006), Nishimura(2011 prep.) etc.

 ζ : Otsuki et al. (2011 prep.)

SN Senario: Quark-Hadron phase transition

Q-H phase transition Supernova

Stalled shock wave revived by Q-H phase transition : Sagert et al. (2009), Tobias et al(2011)

Methods and Results

- tracers and nucleosynthesis
- r-process
- ν p-process

physical quantities (thermodynamics)

neutrino quantities

- Luminosity
- Energy
- Radius

Post-process Nucleosynthesis

weak interaction (Collapase and bounce)

- -evolutions of Y_e from hydrodynamic explosion model
- NSE abundance (Temperature > 9 [GK])
- Nucleosynthesis (α -process, r-process ...)
 - •Post processing based on T, p and neutrino by SN model
 - •full Nuclear Reaction Network (Nishimura et al. 2006 etc.)
 - •4071 isotopes、related reactions (REACLIB)
 - weak interaction (FFN + LMP reaction rates)

high temperature and density

<u>abundances (NSE)</u> NSE condition

T9 > 5-9 [GK]

 $\begin{array}{l} \hline reactions \text{ (weak reaction)} \\ \text{non-degenerate ideal gas} \\ \rho \leq 2.4 \times 10^{-8} \ T^{3/2} \quad [\text{g/cc}] \\ \\ T = 1.0 \times 10^{10} \ [\text{K}] \quad \rho \leq 2.4 \times 10^7 \quad [\text{g/cc}] \\ \\ T = 5.0 \times 10^9 \ [\text{K}] \quad \rho \leq 8.5 \times 10^6 \quad [\text{g/cc}] \end{array}$

NSE abundances for tracers

				7	а		x	Z	а		X
Z	a		X	2	1	II o I		2	4	He4	3.6785234E-01
2	4	He4	5.7641774E-01	Z	4	не4	5.7071943E-01	_	1		
0	1	n	3.7803856E-01	0	1	n	3.4329333E-01	0	T	n	3.6465686E-01
1	1	q	4.5456105E-02	1	1	р	7.9896356E-02	1	1	р	2.6734346E-01
1	2	D	7.8632120E-05	1	2	D	8.4705918E-05	1	2	D	1.4360240E-04
1	3	т	4.8630673E-06	1	3	Т	3.3607706E-06	1	3	Т	2.5027556E-06
4	8	Be8	3.7365977E-06	4	8	Be8	2.4508372E-06	2	3	He3	7.1119032E-07
2	3	He3	2.2252386E-07	2	3	He3	2.9509233E-07	4	8	Be8	5.2188898E-07
6	12	C12	1.2162225E-07	6	12	C12	5.7292597E-08	3	6	Li6	3.5236660E-09
3	6	Li6	9.2243331E-09	3	6	Li6	6.6533730E-09	6	12	C12	3.0602468E-09
8	16	016	2.5193770E-09	3	7	Li7	1.0003146E-09	3	-2	Ti7	2.2468669E-10

0.5 1 1.5 e after bounce [s] . <u>Condition for nucleosynthesis</u>

at the time of α -rich freez-eout

nucleosynthesis: neutron rich tracers

 10^{-1} 10

mass fraction mass fraction 10⁻² 10⁻³ 10⁻⁴ 10⁻⁴

1**0**0⁵⁵

100⁶⁶

1

10⁻¹

10⁻²

10⁻³

10⁻⁴

10⁻⁵

10⁻⁶

mass fraction

2200

20

40

60

80

mass number

100

120

140

4400

60

80

mass number

110000

1220 1440

$Ye \sim 0.35 - 0.4$

mass number

<u>integrated final abundances</u> compared to solar r-element (in different vertical scales)

Ye uncertainty : r-process

fixed tracer: different initial $Y_e~$ ($90{\sim}60~\%$)

tracer #1-0 Ye = 0.334 log10(X): mass fraction (log scale) tracer #1-1 Ye *0.9 Ye=0.301 0 tracer #1-2 Ye *0.8 Ye=0.270 tracer #1-3 Ye *0.7 Ye=0.236 -1 tracer #1-4 Ye *0.6 -2 -3 -4 -5 -6 50 100 150 200 250 A: mass number

mass fraction tracer #1

<u>Conclusions</u>

- <u>neutron rich component (main)</u>
 - reproduce A \sim 100 r-element (weak r-process)
 - (strong r-process does not occur)
- proton rich componet
 - up to A=90 isotopes by ν p-process
 - (distribution is minor)

<u>Perspective</u>

- Multi Dimensional Explosion Simulations
 - \rightarrow Y_e is sensitive to dynamics
 - \rightarrow Nucleosynthesis also quite sensitive to $Y_{\rm e}$